Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao,* Li-Hua Huo, Zhao-Peng Deng and Hui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.046$
$w R$ factor $=0.131$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

\{2-[(2-Hydroxyphenyl)iminomethyl]phenolato\}(N -oxido- N -phenylbenzamide)oxovanadium(V)

The V^{V} atom in the title complex, $\left[\mathrm{V}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{2}\right)\right.$ $\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right) \mathrm{O}$], is coordinated by two O atoms and one N atom of the tridentate Schiff base ligand, and by two O atoms of the bidentate hydroxamate co-ligand, defining a distorted octahedral $\mathrm{VO}(\mathrm{ONO})(\mathrm{OO})$ geometry.

Comment

The presence of oxovanadium (V) at the active sites of some biological enzymes has resulted in increased interest in the study of the structural properties (Butler \& Walker, 1993; Sangeetha \& Pal, 2000). A tridentate Schiff base ligand is generally coordinated to a metal through the O and N atoms, giving coordination environments similar to those of the biological system; therefore, it is important to investigate vanadium (V) complexes with Schiff base ligands. To date, only three vanadium(IV/V) complexes containing the same $\mathrm{H}_{2} L^{1}$ ligand as the title compound, (I), have been reported; in these, the V atoms have two structural forms, namely VO^{3+} (Casellato et al., 1982; Clague et al., 1993) and V^{4+} (Hefele et al., 1995). In our previous work, we have reported the structures of oxovanadium (V) complexes containing hydrazone ligands (Gao et al., 1998, 2004; Huo, Gao, Liu, Li \& Ng, 2004; Huo, Gao, Liu, Zhao \& Ng, 2004; Liu \& Gao, 1998).

(I)

The molecular structure of (I) is illustrated in Fig. 1. The V atom is coordinated by five O atoms and one N atom, and forms a distorted octahedral $\mathrm{O}_{5} \mathrm{~N}$ configuration. The equatorial plane is defined by atoms $\mathrm{O} 2, \mathrm{O} 3$ and N 1 of the fully deprotonated tridentate Schiff base ligand, and oxime atom O4 of the hydroxamate co-ligand has a deviation of 0.009 (4) A from this plane. The axial oxo atom O1 is in a trans position relative to carbonyl atom O 5 of the hydroxamate coligand. The V atom deviates by 0.28 (3) \AA from the equatorial plane, towards the oxo atom. The V1-O1 bond distance is

Received 5 January 2005
Accepted 21 April 2005
Online 27 April 2005
\qquad
within the normal range in the structures of VO^{3+} complexes (Chen et al., 1999). The bond distances in the equatorial plane follow the order: $\mathrm{V} 1-\mathrm{O} 2<\mathrm{V} 1-\mathrm{O} 4<\mathrm{V} 1-\mathrm{O} 3<\mathrm{V} 1-\mathrm{N} 1$. The axial $\mathrm{V} 1-\mathrm{O} 5$ distance is longer than the equatorial $\mathrm{V}-\mathrm{O}$ bond lengths, owing to the strong trans influence of the oxo group. The Schiff base ligand and the hydroxamate co-ligand combine with the V atom to give one six-membered and two five-membered chelate rings. The two five-membered chelate rings, involving atoms $\mathrm{O} 3, \mathrm{C} 13, \mathrm{C} 8, \mathrm{~N} 1$ and V 1 , and $\mathrm{O} 4, \mathrm{~N} 2$, C20, O5 and V1, are each basically planar, with mean deviations of 0.08 (3) and 0.06 (3) \AA, respectively, whereas the sixmembered chelate ring, involving atoms $\mathrm{O} 2, \mathrm{C} 1, \mathrm{C} 6, \mathrm{C} 7, \mathrm{~N} 1$ and V1, is non-planar, with an r.m.s. deviation of 0.19 (2) \AA. The dihedral angle between the two five-membered chelate rings is $72.9(7)^{\circ}$, the dihedral angle between the benzene rings $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 8-\mathrm{C} 13$ is $34.2(4)^{\circ}$, and that between the $\mathrm{C} 14-\mathrm{C} 19$ and C21-C26 rings is $58.2(4)^{\circ}$.

Experimental

Solid vanadyl(IV) diacetate (1 mmol) was added to an ethanol solution (15 ml) of 2-(2'-hydroxyphenyl)iminomethylphenol (1 mmol) and the mixture was refluxed with stirring for 1.5 h . An ethanol solution containing N-hydroxy- N-phenylbenzamide (1 mmol) was added to the above solution with refluxing for 1.0 h and then filtered. The resulting dark-red solid was dissolved in dichloromethane and filtered. Dark-red crystals of (I) were obtained by slow diffusion of hexane into the filtrate over several days. Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~V}$: C 63.68, H 3.91, N 5.71%; found: C 63.64, H 3.87, N 5.69%.

Crystal data

$\left[\mathrm{V}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right) \mathrm{O}\right]$
$M_{r}=490.37$
Triclinic, $P \overline{1}$
$a=9.0795$ (18) £
$b=10.134$ (2) \AA
$c=12.624$ (3) \AA
$\alpha=104.84(3)^{\circ}$
$\beta=91.11$ (3) ${ }^{\circ}$
$\gamma=92.08(3)^{\circ}$
$V=1121.6$ (4) \AA^{3}

Data collection

Rigaku R-AXIS RAPID
\quad diffractometer
ω scans
Absorption correction: multi-scan
\quad (ABSCOR; Higashi, 1995)
$T_{\min }=0.837, T_{\max }=0.918$
11056 measured reflections

$Z=2$

$D_{x}=1.452 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9503 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.48 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, dark red
$0.38 \times 0.26 \times 0.18 \mathrm{~mm}$

5076 independent reflections
4098 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.131$
$S=1.05$
5076 reflections
307 parameters
H -atom parameters constrained

Figure 1
ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radii.

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

V1-N1	2.087 (2)	N1-C8	1.457 (3)
V1-O1	1.5901 (16)	N2-C20	1.338 (3)
V1-O2	1.8769 (16)	$\mathrm{O} 2-\mathrm{C} 1$	1.322 (2)
V1-O3	1.8958 (18)	O3-C13	1.347 (3)
V1-O4	1.8776 (15)	$\mathrm{O} 4-\mathrm{N} 2$	1.372 (2)
V1-O5	2.2016 (16)	O5-C20	1.250 (2)
N1-C7	1.257 (3)	N2-C14	1.430 (2)
N1-V1-O5	88.02 (7)	$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 4$	101.03 (7)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{N} 1$	100.62 (8)	$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 5$	81.98 (7)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 2$	97.36 (9)	$\mathrm{O} 3-\mathrm{V} 1-\mathrm{N} 1$	77.75 (8)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 3$	101.64 (9)	$\mathrm{O} 3-\mathrm{V} 1-\mathrm{O} 5$	81.61 (8)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 4$	95.85 (8)	$\mathrm{O} 4-\mathrm{V} 1-\mathrm{N} 1$	162.36 (7)
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 5$	171.21 (7)	$\mathrm{O} 4-\mathrm{V} 1-\mathrm{O} 3$	92.85 (8)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{N} 1$	83.17 (8)	$\mathrm{O} 4-\mathrm{V} 1-\mathrm{O} 5$	75.75 (6)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 3$	155.16 (8)		

All H atoms were placed in calculated positions and were allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and Heilongjiang University for supporting this study.

References

Butler, A. \& Walker, J. V. (1993). Chem. Rev. 93, 1937-1944.
Casellato, U., Vigato, P. A., Graziani, R., Vidali, M., Milani, F. \& Musiani, M. M. (1982). Inorg. Chem. Acta, 61, 121-128.

Chen, W., Gao, S. \& Liu, S.-X. (1999). Acta Cryst. C55, 531-533.
Clague, M. J., Keder, N. L. \& Butler, A. (1993). Inorg. Chem. 32, 4754-4761.

metal-organic papers

Gao, S., Liu, J.-W., Huo, L.-H., \& Zhao, H. (2004). Acta Cryst. E60, m1722m1724.
Gao, S., Weng, Z.-Q. \& Liu, S.-X. (1998). Polyhedron, 17, 3595-3606.
Hefele, H., Ludwig, E., Unlemann, E. \& Weller, F. (1995). Z. Anorg. Allg. Chem. 621, 1973-1976.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Huo, L.-H., Gao, S., Liu, J.-W., Li, J. \& Ng, S. W. (2004). Acta Cryst. E60, m758m760.
Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m606-m608.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
Liu, S.-X. \& Gao, S. (1998). Polyhedron, 17, 81-84.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Sangeetha, N. R. \& Pal, S. (2000). Bull. Chem. Soc. Jpn, 73, 357-363.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

